宇宙学

第2讲 用FLRW 度规描述膨胀的宇宙

Cheng-Zong Ruan

cheng-zong.ruan@durham.ac.uk

ICC, Durham last update: January 5, 2022

▶ 教材: Modern Cosmology, Scott Dodelson and Fabian Schmidt

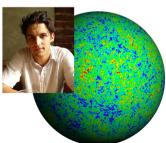
▶ 参考资料: Cosmology (online lecture notes), Daniel Baumann



Cosmology

Daniel Baumann

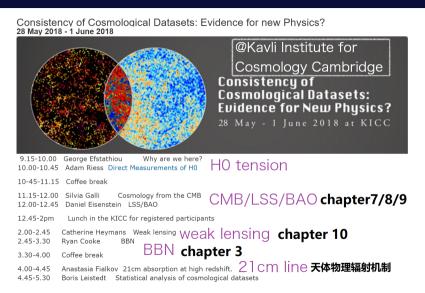
Institute of Theoretical Physics, University of Amsterdam, Science Park. 1090 GL Amsterdam. The Netherlands



课程内容

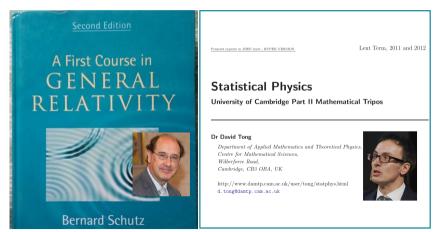
- ▶ 均匀各向同性宇宙的几何、运动学、动力学与平衡态热力学(第 1-2 章)
- ▶ 超越平衡态:以氢原子复合、暗物质遗迹与大爆炸核合成的原初氦丰度为例(第3章)
- ▶ 玻尔兹曼方程: 宇宙成分(背景 + 扰动)的演化(第 4 章)
- ▶ 爱因斯坦方程: 时空(背景 + 扰动)的演化(第5章)
- ▶ 暴胀机制,演化方程初始条件及其产生(第6章)
- ▶ 物质(以冷暗物质为主)扰动的解(第7章)
- ► 辐射 (宇宙微波背景, CMB) 各向异性的解 (第8章)
- ▶ 宇宙学观测: 星系巡天、弱引力透镜与 CMB 极化等 (第 9-10 章)
- ► 宇宙学数据分析: 以 CMB 与星系巡天为例 (第 11 章)

课程内容



课程内容

- ▶ 面向宇宙学专业的研究生
- ▶ 先修课: 广义相对论, 热力学与统计力学



膨胀的均匀宇宙模型: FLRW 度规

- ▶ 宇宙学原理 (cosmological principle): 宇宙在大尺度是均匀各向同性的
- ► 根据黎曼几何,描述这一时空的度规是 Friedmann-Lemaître-Robertson-Walker (FLRW) 度规: (推导参见任何一本广 义相对论教材的宇宙学部分)

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t)\left[rac{\mathrm{d}r^2}{1-kr^2} + r^2\left(\mathrm{d} heta^2 + \sin^2 heta\mathrm{d}arphi^2
ight)
ight]$$
 ,

FLRW 宇宙的对称性将度规的十个独立分量约化为一个时间的函数——**尺度因子 (scale factor)** a(t),与一个常数——**空间曲率参数** k.

cosmology chzruan 6/47

FLRW 宇宙的几何性质——常用物理量

- ▶ 径向坐标 r 称为共动 (comoving) 坐标
- ▶ 相应的物理距离 $r_{\text{phys}} = a(t)r$, 物理速度

$$u_{
m phys} \equiv rac{{
m d}r_{
m phys}}{{
m d}t} = a(t)rac{{
m d}r}{{
m d}t} + rac{{
m d}a}{{
m d}t}r =
u_{
m pec} + Hr_{
m phys} \; ,$$

其中定义了**本动速度 (peculiar velocity)** $v_{pec} \equiv a(t)r$

▶ 真实的物理速度是本动速度与**哈勃速度(哈勃流, Hubble flow)** *Hr*_{phys} 之和,其中定义了**哈勃参量**为

$$H \equiv \frac{\dot{a}}{a} \quad (\dot{} = \frac{\mathrm{d}}{\mathrm{d}t}) .$$

cosmology chzruan 7/47

FLRW 宇宙的几何性质——常用物理量

▶ 有时重新定义径向坐标 χ : $d\chi \equiv dr/\sqrt{1-kr^2}$, $\chi(r=o)=o$, 从而 FLRW 线元化为

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t) \left[\mathrm{d}\chi^2 + S_k^2(\chi) \left(\mathrm{d}\theta^2 + \sin^2\theta \ \mathrm{d}\varphi^2 \right) \right]$$
 ,

其中

$$S_k(\chi) \equiv \begin{cases} \frac{1}{\sqrt{k}} \sinh(\sqrt{k}\chi) & k < 0\\ \chi & k = 0\\ \frac{1}{\sqrt{k}} \sin(\sqrt{k}\chi) & k > 0 \end{cases}$$

cosmology chzruan 8/47

FLRW 宇宙的几何性质——常用物理量

▶ 定义**共形时间 (conformal time)** η : $d\eta = dt/a(t)$, FLRW 线元化为

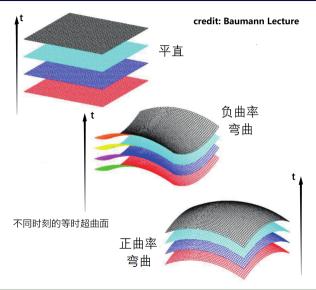
$$\mathrm{d}s^2 = a^2(\eta) \Big\{ -\mathrm{d}\eta^2 + \left[\mathrm{d}\chi^2 + S_k^2(\chi) \left(\mathrm{d}\theta^2 + \sin^2\theta \, \mathrm{d}\varphi^2 \right) \right] \Big\}$$
 $\mathrm{d}s^2 =$ 时间的函数 $a(\eta) \times$ 静态度规

ト 光子沿类光测地线运动: $ds^2 = o$ 。对于沿径向传播的光子 $(d\theta = d\varphi = o)$ 有 $-d\eta^2 + d\chi^2 = o$,光子从 t = o 到 t 时刻传播的共动距 离为

$$\eta = \int_0^t rac{\mathrm{d}t'}{a(t')} \ .$$

(教材 (2.41) 式)

cosmology chzruan 9/47



▶ 通过对 r 进行坐标变换可以将 k 取 +1,0 或 -1。

例:设k=-3,定义 $\tilde{r}\equiv\sqrt{|k|}r$,以及 $\tilde{a}=(1/\sqrt{|k|})a$,变换后的线元为

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + ilde{a}^2(t) \left[rac{\mathrm{d} ilde{r}^2}{1- ilde{r}^2} + ilde{r}^2 \left(\mathrm{d} heta^2 + \sin^2 heta \, \mathrm{d}arphi^2
ight)
ight] \, ,$$

但是不能通过坐标变换改变 k 的符号。我们需要考虑三种空间超曲面:k = -1, 0, +1

cosmology chzruan 11/47

▶ k = +1 时空的等时 (dt = o) 超曲面,是正的、常曲率的、均匀各向同性空间,它的三维空间度规是

$$\mathrm{d}\ell^2 = a^2(t_\star) \left[rac{\mathrm{d}r^2}{1-r^2} + r^2 \left(\mathrm{d} heta^2 + \sin^2 heta \mathrm{d}arphi^2
ight)
ight]$$
 ,

▶ 该空间是镶嵌在四维欧几里得空间中的三维超球面:定义新坐标 $d\chi^2 = dr^2/(1-r^2)$, $\chi(r=o)=o$, 积分可得 $r=\sin\chi$, 上面的度规化为

$$\mathrm{d}\ell^2 = a^2(t_\star) \left[\mathrm{d}\chi^2 + \sin^2\chi \left(\mathrm{d}\theta^2 + \sin^2\theta \, \mathrm{d}\varphi^2 \right) \right]$$
 ,

这是半径为 $a(t_*)$ 的三维超球面度规

▶ k = +1 的宇宙模型称为**封闭的 (closed)** FLRW 宇宙…

cosmology chzruan 12/47

▶ k = -1 时空的等时 (dt = o) 超曲面,是负的、常曲率的、均匀各向同性空间,它的三维空间度规是

$$\mathrm{d}\ell^{\,2} = a^2(t_\star) \left[rac{\mathrm{d}r^2}{1+r^2} + r^2 \left(\mathrm{d} heta^2 + \sin^2 heta \mathrm{d}arphi^2
ight)
ight] \, ,$$

- ▶ 该空间是镶嵌在四维洛伦兹空间中的三维双曲面(推导略)
- ▶ k = -1 的宇宙模型称为**开放的 (open)** FLRW 宇宙…

cosmology chzruan 13/47

k = 0 时空的等时 (dt = 0) 超曲面,是曲率为零的均匀各向同性空间,它的三维空间度规是

$$\mathrm{d}\ell^2 = a^2(t_\star) \left[\mathrm{d}r^2 + r^2 \left(\mathrm{d}\theta^2 + \sin^2\theta \, \mathrm{d}\varphi^2 \right) \right] \ .$$

该空间是三维欧几里得空间

► 这种情况下 FLRW 度规在直角坐标系的分量是

$$ds^2 = -dt^2 + a^2(t) (dx^2 + dy^2 + dz^2)$$
,

即为教材 (2.4) 式。

- ▶ k = 0 的宇宙模型称为**平直的 (flat)** FLRW 宇宙…
- ▶ 教材正文假设了平直宇宙

▶ 四维时空中的自由粒子沿该时空的测地线运动,测地线方程(教材 (2.18) 式):

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\lambda^2} = -\Gamma^{\mu}_{\alpha\beta} \frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\beta}}{\mathrm{d}\lambda} ,$$

其中 Christoffel 符号 $\Gamma^{\mu}_{\alpha\beta} = \frac{1}{2}g^{\mu\nu}(g_{\alpha\nu,\beta} + g_{\beta\nu,\alpha} - g_{\alpha\beta,\nu})$ (教材 (2.19) 式)。

- ► FLRW 度规的非零分量: $g_{oo} = -1$, $g_{ij} = a^2(t)\gamma_{ij}$, $g^{oo} = -1$, $g^{ij} = a^{-2}(t)\gamma^{ij}$, 其中 γ^{ij} 与 γ_{ii} 互逆且各分量都与时间无关
- ► Christoffel 符号的非零分量为:

$$\Gamma^{
m o}_{\ ij} = a\dot{a}\gamma_{ij} \;, \quad \Gamma^{i}_{
m oj} = rac{\dot{a}}{a}\delta^{i}_{j} \;, \quad \Gamma^{i}_{jk} = rac{1}{2}\gamma^{i\ell}(\gamma_{k\ell,j} + \gamma_{j\ell,k} - \gamma_{jk,\ell}) \;.$$

cosmology chzruan 15/47

复习: 四维动量

- ► 粒子世界线 $x^{\mu} = x^{\mu}(\lambda)$, λ : 仿射参量,对于有质量粒子,仿射参量可以取世界线线长 s
- ► 粒子的四动量定义为 $P^{\mu} \equiv \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}$
- ▶ 粒子四动量在某个坐标系的 o 分量是粒子在那个系中的能量:

$$P^{o} = \frac{\mathrm{d}x^{o}}{\mathrm{d}\lambda} = \frac{\mathrm{d}t}{\mathrm{d}\lambda} = E .$$

- ▶ 三维(物理)动量大小: $p^2 \equiv g_{ii}P^iP^j$

▶ 测地线方程(教材 (2.18) 式) $\frac{d^2x^{\mu}}{d\lambda^2} = -\Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\lambda} \frac{dx^{\beta}}{d\lambda}$ 等号左侧用四动量表示:

$$rac{\mathrm{d}^2 x^\mu}{\mathrm{d}\lambda^2} = rac{\mathrm{d}P^\mu}{\mathrm{d}\lambda} = rac{\partial P^\mu}{\partial x^lpha} rac{\mathrm{d}x^lpha}{\mathrm{d}\lambda} = P^lpha rac{\partial P^\mu}{\partial x^lpha} \; ,$$

FLRW 宇宙的空间均匀性意味着 $\frac{\partial P^{\mu}}{\partial x^{i}} = 0$, 测地线方程化为

$$P^{o}\frac{\mathrm{d}P^{\mu}}{\mathrm{d}t} = -\Gamma^{\mu}_{\alpha\beta}P^{\alpha}P^{\beta}.$$

cosmology chzruan 17/47

▶ 测地线方程的 o 分量 (P° = E):

$$P^{\circ} \frac{\mathrm{d}P^{\circ}}{\mathrm{d}t} = \boxed{E \frac{\mathrm{d}E}{\mathrm{d}t}} = -\Gamma^{\circ}_{ij} P^{i} P^{j} = a \dot{a} \gamma_{ij} P^{i} P^{j} = \frac{\dot{a}}{a} \underbrace{g_{ij} P^{i} P^{j}}_{\equiv p^{2}} = \boxed{\frac{\dot{a}}{a} p^{2}}.$$

▶ 对关系 $E^2 - p^2 = m^2$ 微分可得 E dE = p dp , 带入上式得到

$$\frac{1}{p}\frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{1}{a}\frac{\mathrm{d}a}{\mathrm{d}t} \quad \to \quad \boxed{p \propto \frac{1}{a}},$$

自由粒子的三维物理动量随着宇宙膨胀衰减。这一结论对有质量和无质量粒子都成立

cosmology chzruan 18/47

- ► 无质量粒子 (m = 0): $E = p \propto \frac{1}{a}$, 在膨胀宇宙中传播的光子能量降低 (宇宙学红移) (教材 (2.29) 式)
- ▶ 有质量粒子: 定义粒子的(共动)本动速度 $v^i \equiv \frac{dx^i}{dt}$,以及(物理)本动速度大小 $v^2 \equiv g_{ij}v^iv^j$,三维物理动量大小 p^2 可写为

$$p^{2} = g_{ij}P^{i}P^{j} = g_{ij}\frac{\mathrm{d}x^{i}}{\mathrm{d}\lambda}\frac{\mathrm{d}x^{j}}{\mathrm{d}\lambda} = \underbrace{g_{ij}\frac{\mathrm{d}x^{i}}{\mathrm{d}t}\frac{\mathrm{d}x^{j}}{\mathrm{d}t}}_{\equiv \mathbb{P}^{2}}\left(\underbrace{\frac{\mathrm{d}t}{\mathrm{d}\lambda}}\right)^{2}_{=\mathbb{P}^{2}} = v^{2}E^{2},$$

由此可得 $p = \frac{mv}{\sqrt{1-v^2}} \propto \frac{1}{a}$, 这意味着自由的有质量粒子的本动速度 v 随宇宙膨胀而衰减趋于 o (收敛到哈勃流)。(第二章习题 4)

cosmology chzruan 19/47

► 光子沿类光测地线 $ds^2 = o$ 传播,研究光的传播用共形时间特别方便: $d\eta = dt/a(t)$ 。不失一般性,考虑沿径向传播的光 $(d\theta = d\varphi = o)$,类 光测地线为

$$a^2(\eta)(-\mathrm{d}\eta^2+\mathrm{d}\chi^2)=\mathrm{o}\quad \Rightarrow\quad \Delta\eta=\pm\Delta\chi \ .$$

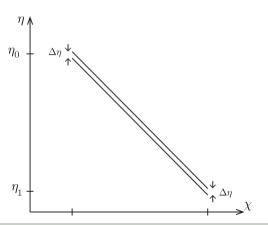
- ightharpoonup 设共动距离 ho 的遥远星系在 ho_1 时刻在 ho 时间段内发射光子(或者说,发出周期为 ho 的电磁波),在 ho_0 时刻被地球接收到。
- ▶ 光源与观测者所经历的共形时间间隔相等,但物理时间间隔不一样:

$$\Delta t_{\scriptscriptstyle 1} = a(\eta_{\scriptscriptstyle 1})\,\Delta\eta$$
 , $\Delta t_{\scriptscriptstyle 0} = a(\eta_{\scriptscriptstyle 0})\,\Delta\eta$.

cosmology chzruan 20/47

▶ 光源与观测者所经历的共形时间间隔相等,但物理时间间隔不一样:

$$\Delta t_1 = a(\eta_1) \, \Delta \eta$$
 , $\Delta t_0 = a(\eta_0) \, \Delta \eta$.



cosmology chzruan 21/47

- ▶ 光波长: 光源: $\lambda_1 = \Delta t_1$ (已经设 c = 1), 地球: $\lambda_0 = \Delta t_0$, 由此可得 $\frac{\lambda_0}{\lambda_1} = \frac{a(\eta_0)}{a(\eta_1)}$
- ► 定义红移 $z \equiv \frac{\lambda_{\text{o}} \lambda_{\text{1}}}{\lambda_{\text{1}}} = \frac{a(t_{\text{o}})}{a(t_{\text{1}})} 1$,即 $1 + z = \frac{a(t_{\text{o}})}{a(t_{\text{1}})}$,通常定义 $a(t_{\text{o}}) \equiv 1$,从而有

$$\boxed{1+z=\frac{1}{a}}.$$

cosmology chzruan 22/47

- ▶ 推导宇宙学红移的另一种方式
- ▶ 量子力学中,光子的波长和动量的关系为 $\lambda = h/p$
- ▶ 由于 $p \propto 1/a$,因此 $\lambda \propto a$,即 t_1 时刻发射出的 λ_1 光子在 t_0 被观测 到时的波长为

$$\lambda_{\rm o} = \frac{a(t_{\rm o})}{a(t_{\rm i})} \lambda_{\rm i} > \lambda_{\rm i}$$
,波长变长,发生红移…

$$ightharpoonup z \equiv rac{\lambda_{
m o} - \lambda_{
m i}}{\lambda_{
m i}}, \quad {
m i} + z = rac{1}{a} \ (a(t_{
m o}) \equiv {
m i}).$$

cosmology chzruan 23/47

FLRW 宇宙的运动学——哈勃定律

▶ 对于**邻近的**天体,可以对 $a(t_1)$ 在 $t=t_0$ 处进行泰勒展开:

$$a(t_1) = a(t_0) + \dot{a}(t_0)(t_1 - t_0) + \cdots$$

 $\approx a(t_0)[1 + H_0(t_1 - t_0)]$

其中哈勃常量 $H_o \equiv \dot{a}(t_o)/a(t_o)$.

▶ 邻近天体的距离 $d \approx c(t_1 - t_0) = (t_1 - t_0)$,于是可得红移 1 + z = 1/a 与距离的关系为

$$z = H_0 d$$
 (哈勃定律).

▶ 对于遥远(高红移)天体,距离-红移不再是简单的比例关系。第一, 泰勒展开的高阶项不可忽略;第二,宇宙学尺度上的距离不再是简单 的欧几里得情形

cosmology chzruan 24/47

FLRW 宇宙的运动学——宇宙学距离

- ▶ 度规距离 S_k /共动距离 χ
- ▶ 角直径距离 d_A
- ► 光度距离 d_L

FLRW 宇宙的运动学——共动距离 χ

- $(d\chi \equiv dr/\sqrt{1-kr^2}, \chi(r=0)=0)$
- ► (FLRW 度规: $ds^2 = -dt^2 + a^2(t) \left[d\chi^2 + S_k^2(\chi) \left(d\theta^2 + \sin^2\theta d\varphi^2 \right) \right]$)
- ► 红移为 z 的遥远天体在 a = 1/(1+z) 时刻沿径向 ($d\theta = d\varphi = o$) 向地球发出光子,在 t = o 被地球接收到,光子轨迹 $ds^2 = o$,即 $-dt^2 + a^2(t) d\chi^2 = o$,该天体的共动距离为

$$\chi(a)=\int_{t(z)}^{t_{\mathrm{o}}}rac{\mathrm{d}t'}{a(t')}=\int_{a}^{1}rac{\mathrm{d}a'}{a'^{2}H(a')}\;.$$

(教材 (2.42) 式)

► 用红移表示的共动距离: $\chi(z) = \int_0^z \frac{\mathrm{d}z'}{H(z')}$.

cosmology chzruan 26/47

FLRW 宇宙的运动学——度规距离 S_k

► FLRW 度规: $ds^2 = -dt^2 + a^2(t) \left[d\chi^2 + S_k^2(\chi) (d\theta^2 + \sin^2\theta d\varphi^2) \right]$,度规距 离定义为与立体角元 $d\Omega^2 = d\theta^2 + \sin^2\theta d\varphi^2$ 相乘的那个量:

$$S_k(\chi) = egin{cases} rac{1}{\sqrt{|k|}} \sinhig(\sqrt{k}\chiig) & k < \mathrm{o} \ \chi & k = \mathrm{o} \ rac{1}{\sqrt{k}} \sinig(\sqrt{k}\chiig) & k > \mathrm{o} \end{cases}$$

► 在平直宇宙中, 度规距离等于共动距离 χ

cosmology chzruan 27/47

FLRW 宇宙的运动学——角直径距离 d_A

- ▶ 静态欧几里得空间中,横向物理尺度为 ℓ 的标准尺所张成的视角为 θ ,相应的角直径距离 $d_A = \ell/\theta$ ($\theta \ll 1$)
- ▶ 膨胀宇宙(FLRW 时空)中:设可作为标准尺的天体在 t 时刻(对应尺度因子 a(t)、红移 z=1/a-1)发出的光在 t_o 时刻被地球接收到。t 时刻,标准尺的横向物理尺度为 $\ell=a(t)S_k(\chi)\theta$,角直径距离

$$d_A = rac{\ell}{ heta} = a(t)S_k(\chi) = a imes egin{cases} rac{1}{\sqrt{k}} \sinhig(\sqrt{|k|}\chiig) & k < \mathrm{o} \ \chi & k = \mathrm{o} \ rac{1}{\sqrt{k}} \sinig(\sqrt{k}\chiig) & k > \mathrm{o} \end{cases}.$$

cosmology chzruan 28/47

FLRW 宇宙的运动学——角直径距离 ds

►
$$k = 0$$
: $d_A = a\chi = \frac{\chi}{1+\chi}$, 教材 (2.45) 式

►
$$k < o$$
: $d_A = \frac{a}{H_o \sqrt{|\Omega_k|}} \sinh[\sqrt{\Omega_k} H_o \chi]$,教材 (2.46) 式

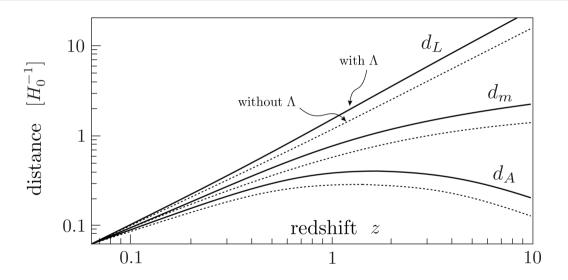
▶ 其中
$$\Omega_k \equiv -k/(a_o^2 H_o^2)$$
, $a_o = 1$, 见下文。

cosmology chzruan 29/47

FLRW 宇宙的运动学——光度距离 d_L

- ▶ 静态欧几里得空间,绝对光度 L、观测流量 F、距离 d 之间的关系为 $F = L/(4\pi d^2)$
- ▶ 膨胀宇宙(FLRW 时空)中: 设观测者位于原点,位于径向共动距离 χ 处的光源在 t 时刻(对应红移 z)发出的光在 t_0 时刻到达地球
 - t_o 时刻,以光源天体为中心、地球-光源距离为半径的球面的表面积为 $4\pi S_k^2(\chi)$
 - 发射与接收时的时间间隔 δt_{emit} 和 $\delta t_{\text{receive}}$ 的关系为 $\delta t_{\text{receive}} = \delta t_{\text{emit}} (1+z)$,即光 子的到达率比发射率降低了 1/(1+z) 倍
 - 每个光子的到达地球时的能量比发射时降低了 1/(1+z) 倍
 - 修正后的流量-绝对光度-距离的关系为 $F = \frac{L}{4\pi S_k^2(\chi)(1+z)^2} \equiv \frac{L}{4\pi d_L^2}$
 - ▶ 其中定义了光度距离 $d_L \equiv S_k(\chi)(1+z)$. 在平直宇宙中: $d_L = \chi/a$ (教材 (2.50) 式)

宇宙学距离



FLRW 宇宙的动力学——爱因斯坦场方程

- ► 爱因斯坦场方程 (教材 (2.30) 式): $G_{\mu\nu} = 8\pi G T_{\mu\nu}$
- ► 爱因斯坦张量 $G_{\mu\nu} \equiv R_{\mu\nu} \frac{1}{2} g_{\mu\nu} R$,是 Ricci 张量、Ricci 标量 $R \equiv g^{\mu\nu} R_{\mu\nu}$ 与度规张量的组合
- ► Ricci 张量 $R_{\mu\nu} = \Gamma^{\alpha}_{\ \mu\nu,\alpha} \Gamma^{\alpha}_{\ \mu\alpha,\nu} + \Gamma^{\alpha}_{\ \beta\alpha} \Gamma^{\beta}_{\ \mu\nu} \Gamma^{\alpha}_{\ \beta\nu} \Gamma^{\beta}_{\ \mu\alpha}$. ((2.31) 式)
- ▶ 度规张量 $g_{\mu\nu}$ ⇒ Christoffel 符号 $\Gamma^{\mu}_{\alpha\beta}$ ⇒ Ricci 张量 $R_{\mu\nu}$ 和标量 R
- ▶ (以下只考虑平直宇宙 k = 0)

cosmology chzruan 32/47

FLRW 宇宙的动力学——爱因斯坦场方程

- **>** 爱因斯坦场方程(教材 (2.30) 式): $G_{\mu\nu} = 8\pi G T_{\mu\nu}$:10 个二阶偏微分方程组
- ► FLRW 度规的均匀各向同性意味着……1. 空间导数消失; 2. 独立方程的数目减少; 3. 未知的函数只有尺度因子 *a*(*t*)
- ▶ 爱因斯坦场方程 +FLRW 度规 =Friedmann 方程: 2 个关于尺度因子 a(t) 的二阶常微分方程
- ▶ 剧透: Friedmann 方程为

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} \qquad \text{o-o 分量}$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) \quad i-i \, \text{分量}$$

cosmology chzruan 33/47

FLRW 宇宙的动力学——Christoffel 符号及其导数

▶ 时空坐标 (t,x,y,z), FLRW 度规的非零分量及其导数为

$$egin{align} g_{\mu
u} = egin{pmatrix} -1 & & & \ & a^2(t)\,\delta_{ij} \end{pmatrix} \,, \quad g^{\mu
u} = egin{pmatrix} -1 & & & \ & a^{-2}(t)\,\delta^{ij} \end{pmatrix} \,, \ g_{ij,\mathrm{o}} = 2a\dot{a}\delta_{ij} \,, \end{split}$$

其中 $\dot{a} = da/dt$.

► Christoffel 符号 $\Gamma^{\mu}_{\alpha\beta} = \frac{1}{2}g^{\mu\nu}(g_{\alpha\nu,\beta} + g_{\beta\nu,\alpha} - g_{\alpha\beta,\nu})$ (教材 (2.19) 式)。 非零分量:

$$\Gamma^{o}_{ij} = \delta_{ij}a\dot{a} = \delta_{ij}a^{2}H, \qquad \Gamma^{i}_{oj} = \frac{\dot{a}}{a}\delta^{i}_{j} = \frac{\ddot{a}}{a}\delta^{i}_{j},$$

$$\Gamma^{o}_{ij,o} = \delta_{ij}a^{2}\left[\left(\frac{\dot{a}}{a}\right)^{2} + \frac{\ddot{a}}{a}\right], \qquad \Gamma^{i}_{oj,o} = \delta^{i}_{j}\left[\frac{\ddot{a}}{a} - \left(\frac{\dot{a}}{a}\right)^{2}\right].$$

cosmology chzruan 34/47

FLRW 宇宙的动力学——Ricci 张量和 Ricci 标量

Ricci 张量
$$R_{\mu\nu} = \Gamma^{\alpha}_{\ \mu\nu,\alpha} - \Gamma^{\alpha}_{\ \mu\alpha,\nu} + \Gamma^{\alpha}_{\ \beta\alpha} \Gamma^{\beta}_{\ \mu\nu} - \Gamma^{\alpha}_{\ \beta\nu} \Gamma^{\beta}_{\ \mu\alpha}$$
. 非零分量:

$$R_{
m oo}=-3rac{\ddot{a}}{a}\;,\quad R_{ij}=\delta_{ij}(2\dot{a}^2+a\ddot{a})\;.$$

Ricci 标量:

$$R = g^{\mu\nu}R_{\mu\nu} = 6\left[\frac{\ddot{a}}{a} + \left(\frac{\dot{a}}{a}\right)^2\right].$$

cosmology chzruan 35/47

FLRW 宇宙的动力学——能量-动量张量

▶ 均匀各向同性理想流体的能量-动量张量的分量为

$$T^{\mu}_{
u} = egin{pmatrix} -
ho(t) & \ \mathscr{P}(t)\delta_{ij} \end{pmatrix}$$
 ,

其中 ρ , \mathcal{P} 分别是理想流体的密度/压强。

▶ 能量-动量守恒可以表示为能动张量的四维散度为零(连续性方程): $T^{\mu}_{\nu;\mu} = o((2.52)$ 式),考虑它的 $\nu = o$ 分量可得:((2.55) 式)

$$\dot{\rho} + 3\frac{\dot{a}}{a}(\rho + \mathscr{P}) = 0$$
.

cosmology chzruan 36/47

FLRW 宇宙的动力学——宇宙的组分

▶ **物质** (matter): 压强远小于能量密度, $|P| \ll \rho$, $P \approx o$. 从下文的平衡态 热力学可以看到,这对应于能量密度由质能主导的、非相对论性的粒子气体。设 (2.55) 式中的 P = o 解得

$$\rho_m \propto a^{-3}$$
 ,

这意味着物质的能量密度随着体积的膨胀 $V \propto a^{-3}$ 而稀释.

- **暗物质**. 宇宙的大部分物质是不可见的暗物质,通常假设它是一种新的(超越粒子物理标准模型)粒子
- 重子. 搞宇宙学的把普通物质 (原子核/电子) 都叫重子……

cosmology chzruan 37/47

FLRW 宇宙的动力学——宇宙的组分

▶ **辐射** (radiation): 压强等于能量密度三分之一的组分, $P = \frac{1}{3}\rho$. 这是能量密度由动能主导的、动量远大于质量的相对论性粒子气体。设 (2.55) 式中 $P = (1/3)\rho$ 解得

$$\rho_r \propto a^{-4}$$

辐射的能量密度除了随体积膨胀稀释以外,还包括红移 $E \propto a^{-1}$.

- 光子. 光子质量为零, 总是相对论性粒子
- **中微子**. 早期宇宙:中微子动能远大于质能,像辐射;晚期:动能小于质能,像物质
- ▶ **暗能量**. 负压强流体: $P = -\rho$,带入连续性方程 (2.55) 解得

$$\rho \propto a^{\circ}$$
,

暗能量的能量密度不随宇宙膨胀而稀释……

cosmology chzruan 38/47

FLRW 宇宙的动力学——宇宙的组分

► 大部分宇宙流体可以用状态方程参数 $w \equiv P/\rho$ 参数化,根据连续性方程可得:

$$ho \propto a^{-3(1+w)} = egin{cases} a^{-3} & \text{matter} \\ a^{-4} & \text{radiation} \\ a^{0} & \text{vacuum} \end{cases}$$

cosmology chzruan 39/47

▶ 爱因斯坦场方程 $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu}$ 的 oo 分量:

$$\left[\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2}\right],$$

(曲率项 $-k/a^2$ 的推导不做要求……)

▶ 定义当今时刻的临界密度 $\rho_{\text{crit,o}} \equiv 3H_o^2/(8\pi G)$, 上式化为

$$\frac{H^2}{H_0^2} = \frac{\rho}{\rho_{\text{crit,o}}} - \frac{k}{H_0^2 a^2}$$
. 教材 (2.40) 式

其中 $\rho = \rho_m + \rho_r + \rho_\Lambda + \dots$ 是宇宙中所有组分的能量密度之和。

cosmology chzruan 40/47

► Friedmann 方程

$$egin{aligned} rac{H^2}{H_{\mathrm{o}}^2} &= rac{
ho}{
ho_{\mathrm{crit,o}}} - rac{k}{H_{\mathrm{o}}^2 a^2} = rac{1}{
ho_{\mathrm{crit,o}}} (
ho_m +
ho_r +
ho_\Lambda) - rac{k}{H_{\mathrm{o}}^2 a^2} \ &= rac{1}{
ho_{\mathrm{crit,o}}} igg[
ho_{m\mathrm{o}} igg(rac{a_\mathrm{o}}{a} igg)^3 +
ho_{r\mathrm{o}} igg(rac{a_\mathrm{o}}{a} igg)^4 +
ho_\Lambda igg] - rac{k}{H_{\mathrm{o}}^2 a^2} \ &H^2(a) = H_{\mathrm{o}}^2 igg[\Omega_{m\mathrm{o}} igg(rac{a_\mathrm{o}}{a} igg)^3 + \Omega_{r\mathrm{o}} igg(rac{a_\mathrm{o}}{a} igg)^4 + \Omega_{\Lambda\mathrm{o}} + \Omega_{k\mathrm{o}} igg(rac{a_\mathrm{o}}{a} igg)^2 igg] \end{aligned}$$

▶ 其中定义了物质、辐射、宇宙学常数和曲率对应的密度参数

$$egin{align} \Omega_{mo} &\equiv rac{
ho_{mo}}{
ho_{
m crit,o}} & \Omega_{ro} &\equiv rac{
ho_{ro}}{
ho_{
m crit,o}} \;, \ \Omega_{\Lambda o} &\equiv rac{
ho_{\Lambda}}{
ho_{
m crit,o}} & \Omega_{ko} &\equiv -rac{k}{H_o^2 a_o^2} \;. \ \end{array}$$

cosmology chzruan 41/47

▶ 通常设当今的尺度因子 $a_0 = 1$, Friedmann 方程写为

$$H(a) = H_{
m o} \sqrt{\Omega_{m
m o} a^{-3} + \Omega_{r
m o} a^{-4} + \Omega_{k
m o} a^{-2} + \Omega_{\Lambda
m o}}$$
 .

$$ightharpoonup a=1 \Rightarrow \Omega_{mo}+\Omega_{ro}+\Omega_{ko}+\Omega_{\Lambda o}=1.$$

Parameter	TT+lowE 68% limits	TE+lowE 68% limits	EE+lowE 68% limits	TT,TE,EE+lowE 68% limits	TT,TE,EE+lowE+lensing 68% limits	TT,TE,EE+lowE+lensing+BAC 68% limits
$\Omega_b h^2$	0.02212 ± 0.00022	0.02249 ± 0.00025	0.0240 ± 0.0012	0.02236 ± 0.00015	0,02237 + 0.00015	0.02242 ± 0.00014
$\Omega_{\rm c}h^2$	0.1206 ± 0.0021	0.1177 ± 0.0020	0.1158 ± 0.0046	0.1202 ± 0.0014	Planck 2	018 results
$100\theta_{\mathrm{MC}}$	1.04077 ± 0.00047	1.04139 ± 0.00049	1.03999 ± 0.00089	1.04090 ± 0.00031	1 (
τ	0.0522 ± 0.0080	0.0496 ± 0.0085	0.0527 ± 0.0090	$0.0544^{+0.0070}_{-0.0081}$	⊸arXiv:180	07.06209
$ln(10^{10}A_s)$	3.040 ± 0.016	$3.018^{+0.020}_{-0.018}$	3.052 ± 0.022	3.045 ± 0.016	3.044 ± 0.014	3.047 ± 0.014
n _s	0.9626 ± 0.0057	0.967 ± 0.011	0.980 ± 0.015	0.9649 ± 0.0044	0.9649 ± 0.0042	0.9665 ± 0.0038
$H_0 [\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}] . .$	66.88 ± 0.92	68.44 ± 0.91	69.9 ± 2.7	67.27 ± 0.60	67.36 ± 0.54	67.66 ± 0.42
$\Omega_{\Lambda} \ldots \ldots \ldots \ldots \ldots$	0.679 ± 0.013	0.699 ± 0.012	$0.711^{+0.033}_{-0.026}$	0.6834 ± 0.0084	0.6847 ± 0.0073	0.6889 ± 0.0056
$\Omega_m \ldots \ldots \ldots$	0.321 ± 0.013	0.301 ± 0.012	$0.289^{+0.026}_{-0.033}$	0.3166 ± 0.0084	0.3153 ± 0.0073	0.3111 ± 0.0056
$\Omega_{\rm m} h^2$	0.1434 ± 0.0020	0.1408 ± 0.0019	$0.1404^{+0.0034}_{-0.0039}$	0.1432 ± 0.0013	0.1430 ± 0.0011	0.14240 ± 0.00087
O h3	0.00580 ± 0.00046	0.00635 ± 0.00051	O OOR 1+0.0016	0.00633 ± 0.00020	0.00633 ± 0.00030	0.00635 ± 0.00030

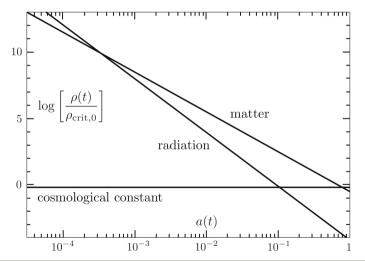
cosmology chzruan 42/47

▶ 爱因斯坦场方程 $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu}$ 的 ii 分量:

$$\boxed{\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P)}.$$

cosmology chzruan 43/47

▶ 辐射为主 → 物质为主 → 暗能量为主



cosmology chzruan 44/47

▶ 单一组分的宇宙: $\rho_I \propto a^{-3(1+w_I)}$, I =物质/辐射/暗能量,带入 Friedmann 方程:

$$\left(\frac{\dot{a}}{a}\right)^2 = H_o^2 \Omega_{Io} a^{-3(1+w_I)} \implies a(t) \propto \begin{cases} t^{2/[3(1+w_I)]} & w_I \neq -1 \\ e^{Ht} & w_I = -1 \end{cases}$$

物质为主时期: $w = 0, a \propto t^{2/3}$; 辐射为主时期: $w = 1/3, a \propto t^{1/2}$.

cosmology chzruan 45/47

▶ 两种组分的宇宙:辐射为主 → 物质为主之间,物质-辐射密度相等时刻为

$$a_{\rm eq} = \frac{\Omega_{ro}}{\Omega_{mo}} \sim 3 \times 10^{-4} ,$$

(质子-自由电子复合、CMB 形成发生在 $a_{rec} \sim 9 \times 10^{-4}$,即 CMB 形成 在物质/辐射两种组分为主的背景宇宙中)

- ► 解 Friedmann 方程可得 $a(\eta) = a_{eq} \left[\left(\frac{\eta}{\eta_{\star}} \right)^2 + 2 \left(\frac{\eta}{\eta_{\star}} \right) \right]$, 其中 $\eta_{\star} \equiv \eta_{eq} / (\sqrt{2} 1)$
- ▶ 推导参见 Baumann 讲义第一章最后一节,另外参见教材本章习题 11

cosmology chzruan 46/47

作业

▶ 计算 FLRW 时空的三维等时超曲面 (dt = o) 的三维 Ricci 标量 $R^{(3)}$

▶ 既然物质使时空弯曲,那么为什么会有 k = o 的"平直"宇宙?

► 前面定义了两个本动速度 $v_{\text{pec}} \equiv a(t) \frac{dr}{dt}$ 和

$$v^2 = g_{ij}v^iv^j = g_{ij}\frac{\mathrm{d}x^i}{\mathrm{d}t}\frac{\mathrm{d}x^j}{\mathrm{d}t}$$

- 证明这两个定义是一致的;或者:
- 证明其中一个定义更"正确"。
- ▶ 教材第二章习题 3、4、11、17
 - 3: 广义相对论如何回到牛顿力学, 之后的牛顿规范会用到
 - 4: 膨胀宇宙中大质量自由粒子的行为, 前面已推导过
 - 11: 物质-辐射两种组分的均匀宇宙解
 - 17: 膨胀宇宙的守恒量——熵密度

